\(\int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx\) [87]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 292 \[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\frac {e x^{1+n} \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}} \operatorname {AppellF1}\left (1+\frac {1}{n},\frac {1}{2},\frac {1}{2},2+\frac {1}{n},-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{(1+n) \sqrt {a+b x^n+c x^{2 n}}}+\frac {d x \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}} \operatorname {AppellF1}\left (\frac {1}{n},\frac {1}{2},\frac {1}{2},1+\frac {1}{n},-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {a+b x^n+c x^{2 n}}} \]

[Out]

e*x^(1+n)*AppellF1(1+1/n,1/2,1/2,2+1/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(1+2*c
*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)*(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)/(1+n)/(a+b*x^n+c*x^(2*n))^(1/2)+d*
x*AppellF1(1/n,1/2,1/2,1+1/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(1+2*c*x^n/(b-(-
4*a*c+b^2)^(1/2)))^(1/2)*(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)/(a+b*x^n+c*x^(2*n))^(1/2)

Rubi [A] (verified)

Time = 0.20 (sec) , antiderivative size = 292, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.192, Rules used = {1446, 1362, 440, 1399, 524} \[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\frac {d x \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1} \operatorname {AppellF1}\left (\frac {1}{n},\frac {1}{2},\frac {1}{2},1+\frac {1}{n},-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {a+b x^n+c x^{2 n}}}+\frac {e x^{n+1} \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1} \operatorname {AppellF1}\left (1+\frac {1}{n},\frac {1}{2},\frac {1}{2},2+\frac {1}{n},-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{(n+1) \sqrt {a+b x^n+c x^{2 n}}} \]

[In]

Int[(d + e*x^n)/Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(e*x^(1 + n)*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[
1 + n^(-1), 1/2, 1/2, 2 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/((1
 + n)*Sqrt[a + b*x^n + c*x^(2*n)]) + (d*x*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b +
Sqrt[b^2 - 4*a*c])]*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*x^n)/(b +
 Sqrt[b^2 - 4*a*c])])/Sqrt[a + b*x^n + c*x^(2*n)]

Rule 440

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
 -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1362

Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a + b*x^n + c*x^(2*n))
^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^2 - 4*a*c, 2])))^Fr
acPart[p])), Int[(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[b^2 - 4*a*c])))^p, x], x] /
; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &&  !IntegerQ[p]

Rule 1399

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a +
 b*x^n + c*x^(2*n))^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^
2 - 4*a*c, 2])))^FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[
b^2 - 4*a*c])))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rule 1446

Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4
*a*c, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (\frac {d}{\sqrt {a+b x^n+c x^{2 n}}}+\frac {e x^n}{\sqrt {a+b x^n+c x^{2 n}}}\right ) \, dx \\ & = d \int \frac {1}{\sqrt {a+b x^n+c x^{2 n}}} \, dx+e \int \frac {x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx \\ & = \frac {\left (d \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}\right ) \int \frac {1}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}} \, dx}{\sqrt {a+b x^n+c x^{2 n}}}+\frac {\left (e \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}\right ) \int \frac {x^n}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}} \, dx}{\sqrt {a+b x^n+c x^{2 n}}} \\ & = \frac {e x^{1+n} \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (1+\frac {1}{n};\frac {1}{2},\frac {1}{2};2+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{(1+n) \sqrt {a+b x^n+c x^{2 n}}}+\frac {d x \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {1}{n};\frac {1}{2},\frac {1}{2};1+\frac {1}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{\sqrt {a+b x^n+c x^{2 n}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 245, normalized size of antiderivative = 0.84 \[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\frac {x \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} \left (e x^n \operatorname {AppellF1}\left (1+\frac {1}{n},\frac {1}{2},\frac {1}{2},2+\frac {1}{n},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )+d (1+n) \operatorname {AppellF1}\left (\frac {1}{n},\frac {1}{2},\frac {1}{2},1+\frac {1}{n},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )\right )}{(1+n) \sqrt {a+x^n \left (b+c x^n\right )}} \]

[In]

Integrate[(d + e*x^n)/Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(x*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b +
 Sqrt[b^2 - 4*a*c])]*(e*x^n*AppellF1[1 + n^(-1), 1/2, 1/2, 2 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*
c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + d*(1 + n)*AppellF1[n^(-1), 1/2, 1/2, 1 + n^(-1), (-2*c*x^n)/(b + Sqrt[b^2 -
 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])]))/((1 + n)*Sqrt[a + x^n*(b + c*x^n)])

Maple [F]

\[\int \frac {d +e \,x^{n}}{\sqrt {a +b \,x^{n}+c \,x^{2 n}}}d x\]

[In]

int((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x)

[Out]

int((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x)

Fricas [F(-2)]

Exception generated. \[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\int \frac {d + e x^{n}}{\sqrt {a + b x^{n} + c x^{2 n}}}\, dx \]

[In]

integrate((d+e*x**n)/(a+b*x**n+c*x**(2*n))**(1/2),x)

[Out]

Integral((d + e*x**n)/sqrt(a + b*x**n + c*x**(2*n)), x)

Maxima [F]

\[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\int { \frac {e x^{n} + d}{\sqrt {c x^{2 \, n} + b x^{n} + a}} \,d x } \]

[In]

integrate((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^n + d)/sqrt(c*x^(2*n) + b*x^n + a), x)

Giac [F]

\[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\int { \frac {e x^{n} + d}{\sqrt {c x^{2 \, n} + b x^{n} + a}} \,d x } \]

[In]

integrate((d+e*x^n)/(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^n + d)/sqrt(c*x^(2*n) + b*x^n + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {d+e x^n}{\sqrt {a+b x^n+c x^{2 n}}} \, dx=\int \frac {d+e\,x^n}{\sqrt {a+b\,x^n+c\,x^{2\,n}}} \,d x \]

[In]

int((d + e*x^n)/(a + b*x^n + c*x^(2*n))^(1/2),x)

[Out]

int((d + e*x^n)/(a + b*x^n + c*x^(2*n))^(1/2), x)